

QCM-01 La valeur de $\cos\left(\frac{\pi}{4}\right)$ est égal à:

- A) 1
- B) $\frac{\sqrt{2}}{2}$
- C) 0

QCM-02 L'expression $\cos\left(x + \frac{\pi}{2}\right)$ est égal à:

- A) sin(x)
- B) cos(x)
- C) $-\sin(x)$

QCM-03 Soit α l'angle orienté de mesure $\frac{15\pi}{3}$

- A) $\alpha = -\frac{\pi}{3}$
- B) $\alpha = \frac{\pi}{3}$
- C) $\alpha = \frac{5\pi}{3}$

QCM-04 L'expression cos(a - b) est égal à:

- A) sin(a) cos(b) + cos(a) sin(b)
- B) cos(a) cos(b) + sin(a) sin(b)
- C) $\cos(a)\cos(b) \sin(a)\sin(b)$

QCM-05 Dans un repère orthonormé direct, le point A a pour coordonnées polaires $\left(1, \frac{\pi}{4}\right)$. Ses coordonnées cartésiennes sont:

- A) $(1, \frac{\sqrt{2}}{2})$
- B) $(\frac{\sqrt{2}}{2}, \frac{1}{2})$

Mise à jour : 30/07/2017

C)
$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$$

Réponses: QCM-01 →B

QCM-02 →C

QCM-03 →A

QCM-04 →B

QCM-05 →C

Mise à jour : 30/07/2017

QCM-06 L'expression $(\cos(x) + \sin(x))^2$ est égal à:

- A) $1 + 2\sin(x)\cos(x)$
- B) $\cos^2(x) + \sin^2(x)$
- C) $1 2\sin(x)\cos(x)$

QCM-07 Les solutions dans $[0,2\pi[$ de l'équation $\cos(x)=\frac{\sqrt{2}}{2}$ sont :

A)
$$x = \frac{\pi}{4} et x = \frac{5\pi}{4}$$

B)
$$x = \frac{\pi}{4} \ et \ x = -\frac{\pi}{4}$$

C)
$$x = \frac{\pi}{4} et x = \frac{3\pi}{4}$$

QCM-08 La valeur exacte de $\cos(\frac{5\pi}{12})$ est égal à:

A)
$$\frac{\sqrt{2}(\sqrt{3}-1)}{4}$$

B)
$$\frac{\sqrt{3}(\sqrt{2}+1)}{4}$$

C)
$$\frac{\sqrt{2}(\sqrt{3}+1)}{4}$$

QCM-09 La valeur exacte de $\sin(\frac{5\pi}{12})$ est égal à:

A)
$$\frac{\sqrt{2}(\sqrt{2}+1)}{4}$$

B)
$$\frac{\sqrt{3}(\sqrt{2}+1)}{4}$$

C)
$$\frac{\sqrt{2}(\sqrt{3}+1)}{4}$$

QCM-10 Les solutions dans \mathbb{R} de l'équation $2\cos^2(x) - \cos(x) - 1 = 0$ sont:

A)
$$x=\frac{2\pi}{3}+2k\pi~ou~x=-\frac{2\pi}{3}+2k\pi~avec~k\in\mathbb{Z}~$$
 ou encore x = 2k π

B)
$$x = -\frac{2\pi}{3} + 2k\pi \ ou \ x = -\frac{2\pi}{3} + 2k\pi \ avec \ k \in \mathbb{Z}$$

C)
$$x = \frac{3\pi}{3} + 2k\pi$$
 ou $x = -\frac{3\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$

Réponses: QCM-06 → A

QCM-07 →B

QCM-08 →A

QCM-09 →C

QCM-10 → A et